Multi-Level Feature Descriptor for Robust Texture Classification via Locality-Constrained Collaborative Strategy
نویسندگان
چکیده
This paper introduces a simple but highly efficient ensemble for robust texture classification, which can effectively deal with translation, scale and changes of significant viewpoint problems. The proposed method first inherits the spirit of spatial pyramid matching model (SPM), which is popular for encoding spatial distribution of local features, but in a flexible way, partitioning the original image into different levels and incorporating different overlapping patterns of each level. This flexible setup helps capture the informative features and produces sufficient local feature codes by some well-chosen aggregation statistics or pooling operations within each partitioned region, even when only a few sample images are available for training. Then each texture image is represented by several orderless feature codes and thereby all the training data form a reliable feature pond. Finally, to take full advantage of this feature pond, we develop a collaborative representation-based strategy with locality constraint (LC-CRC) for the final classification, and experimental results on three well-known public texture datasets demonstrate the proposed approach is very competitive and even outperforms several state-of-the-art methods. Particularly, when only a few samples of each category are available for training, our approach still achieves very high classification performance.
منابع مشابه
MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM
Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملA Novel Noise-Robust Texture Classification Method Using Joint Multiscale LBP
In this paper we describe a novel noise-robust texture classification method using joint multiscale local binary pattern. The first step in texture classification is to describe the texture by extracting different features. So far, several methods have been developed for this topic, one of the most popular ones is Local Binary Pattern (LBP) method and its variants such as Completed Local Binary...
متن کاملA Training-free Classification Framework for Textures, Writers, and Materials
We propose a training-free texture classification scheme, outperforming methods that use training. This we demonstrate not only for traditional texture benchmarks, but also for the identification of materials and writers of musical scores. State-of-the-art methods operate using local descriptors, their intermediate representation over trained dictionaries, and classifiers. For the first two ste...
متن کاملKCRC-LCD: Discriminative kernel collaborative representation with locality constrained dictionary for visual categorization
We consider the image classification problem via kernel collaborative representation classification with locality constrained dictionary (KCRC-LCD). Specifically, we propose a kernel collaborative representation classification (KCRC) approach in which kernel method is used to improve the discrimination ability of collaborative representation classification (CRC). We then measure the similaritie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1203.0488 شماره
صفحات -
تاریخ انتشار 2012